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ABSTRACT

Let £ be a continuous density function which has compact support [a, b].
Let W be a nonnegative weight function which is continuous on its compact
b
support [a, b] and [W(x)dx = 1. The conmplete convergenee of
a

sup

«00< §<O

ha? [s' xk]
ORI s IoN I

to zero is obtained under varying conditions on the bandwidths b(n) and

smoothness of W. For example, one choice of the weight function is

Epanechnikov's optimal function and nbz(n) > n6 for some § > 0. The uniform

complete convergence of the mode estimate is also considered.

Key Words and Phrases. Density function estimates, weight function, bandwidth,

complete convergence, and subGuassian random variables.
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1. Introduction and Preliminaries The construction of a family of

v_itil f5 Y

estimates of a den51ty function £(x) and of the mode has been studied by

several people. Rosenblatt (1956) considered a general class of density

estimates:
x - X
£.00 = 5y Ly b(n) (1.1)
where xl, e Xn are i.i.d. random variables with continuous density function

f(x), W(x) is a bounded integrable weight function such that

[ W(x)dx = 1
and b(n) is a bandwidth that tends to zero as n + =, Thus, the question
arises as to suitable choices of W(x) and b(n) so that the estimate function
fn(x) is optimal (in some sense). The local properties of the estimatc-function
in (1.1) have been studied extensively [see Rosenblatt (1971) for a general

survey], and a global measure of deviation of the curve fn(x) from f£(x) by
l1£, - €], = sup |£ (x) - £0)| (1.2)
xeR

has been considered. Parzen (1962) showed that if the (true) underlying
density function f(x) is uniformly continuous then ||fn - £||_ converges in
probability to zero under the following conditions:

(P1) o, (t) = f elth(x)dx is absolutely integrable,

(P2) /Fb(n) + ® as n -+ o,

The results of Nadaraya (1965) and Woodroofe (1967) on uniform consistency in
the strong sense are listed in the last section for comparison with the results

of this paper.




The major results of this paper give a new class of "éood" weight
functions [which includes the optimal function] under mild conditions on
the bandwidth sequence b(n) where uniform consistency of the estimate fn(x)
is obtained by the complete convergence [see Stout (1966)] of ||fn - £l],
to zero. The main tools used in obtaining these results will be the smoothness

of thc weight function and sub-Gaussian techniques.

Throughout this paper, attention will be restricted to a density function
which has compact support [a, b] and weight functions W(x) which satisfy
(1) ? W(x)dx = 1 and
a
(ii) W(x) is nonnegative and continuous on [a, b] and vanish outside [a, b].

Let Un be a polygonal approximating function on the space of continuous functions

with domain [a, b],C[a, b]. That is,

g[a * ﬁ’%’)i] . [Un(g)][a e -(b—,',—a)—i-}

for i=0,1, ..., nand g € C[a, b], and Un is linear between the points

a+ Sk-irﬂli-and s+ S22 ai(l +1)  Recall that the modulus of continuity,
“g(c), is defined by Billingsley (1968) by

w (y) = sup |g(t) - g(s)] .3
g It-slSy

for y >0, s, t € [a, b], and g € C[a, b].
Definition [Chow (1966)] A random variable X is said to be sub-Gaussian

if there exists a 2 0 such that

2.2
E[exp(tX)] < exp[“ 3

] for all t € R. (1.4)




If X is sub-Gaussian, then let
t(X) = inf{a 2 0: Inequality (1.4) holds}.
Some basic properties on sub-Gaussian random variables inelude:

1) If P[|X| < K] = 1 and EX = 0, then E[exp(tX)] s exp(K’t2). (1.5)
(2) If ©(X) = o, then P[|X]| 2 A] s 2 exp(-A%/24%). (1.6)

(3) The sum of two independent sub-Gaussian random variables is sub-Gaussian.

Finally, a sequence of random variables {Xn} is said to converge completely

to a random variable X if
(-]
LnetPLIX = X| > €] <= .7

for each € > 0. Thus, complete convergence implies convergence with probability

one by Borel's inequality.




2. Main Results. In this section the complete convergence of ||fn - £,
to zero is obtained under conditions on the modulus of continuity of the
weight function W(x) and the rate of convergence to zero by the bandwidth b(n).
Also, the uniform consistency of the mode estimate is obtained in this setting.
The uniform consistency of the estimate fn(x) [in the complcte sensc] is

accomplished by two lemmas.

Lema 1. If (i) nb’(n) > n° for some & > 0 and (ii) w, e R ())
n b(n) J
for some integer r > 0, then
j o =Ny
sup (£ _(s) - EW +0 (2.1)
ncgenl B b(n) b(n

completely as n + « where fn(x) is defined in (1.1).

Proof: Since W and fx vanish outside [a, b] and b(n) + 0, the sup in
1
(2.1) need only be taken over [2a, 2b] (Ja, 2b] suffices if a > 0). Let
X

«2(b-2a) (s} = Wls - crtel~ B8 - vr -
Gn nrb(n) and let Wk(s) Wis 0 EW|s YO for eachk =1, ..., n.

Thus, Eﬁk(s) = 0 for each s € [a, b] and each k. Furthermore,

= (8 ) = sup W (s) - W (t)
Mn T Jets|<e % e
&) ol - o
Sﬁgslsan"[s-m '"t'FGT
Xy Xy
+ T:I.’dsc EW|s 10 EW|t - - < Zm"(Gn). (2.2)
n

Hence, uik(cn) < 2u"(6n) = 0(b(n)) for each k from condition (ii). For

€ >0 let




)
A = [ J > €]
A ZaSSSZb n)
= [ max _ sup -Wl-j- ;_lwk[b—sm-] > €] (2.3)
1sisn® seI b = »
: 2i(b - .
where Ii = [ti-l’ ti] with ti = 2a + -EL;;_Jil fori=1, ..., n'. Hence,

t
A e ety B )
~ tj_
" 1eia” sk, 567 e 5] - 51> - 2.4)
However,
it
& i 2
151407 :‘3 "““5 ke [ (n 5] % "k[bfniﬂ = 5y “w(n)- (2.5)

Since mw(sn) = 0(b(n)) by condition (ii), there exists N(r) such that

A_ < [ max

> 5
151Sn 2

t,
o ey By

for all n 2 N(r). Using the basic properties of sub-Gaussian random variables
[{Wk(ti): k=1, 2, ...} for each i], for each n > N(r)

P(A ) < P[ max

> Ei
1sis 2

1_n & t ]
r|abm) Lk=1"k (B

EB%ET‘ :-1wk{5;%7J > 3]

x 21-1

< n'2 exp[-ezl4||W||an] (2.6)

B
where IlP”. = 3:p lw(s)l and Bn = 22‘1 [m] = m . To obtain the




complete convergence in (2.1), consider

zntlp(A B ZN(r)p(An) 2 2;=N(r)+1P(An)

S N(x) + Z::n(r)+1 2n exp[ii n; fn\]

< N(x) + Z:=N(r)+1 anexp(-cns) (2.7)

where c = 52/4||W||°. Thus, the series in (2.7) converges by the integral test.

Lemma 2. If the underlying density, f, is continuous, then

- X
1 o 1)
sup EW - £f(s)
i P b(n) b(n)

+0 as n-> o, (2.8)

Proof: Since f is continuous and 1im £(x) = 0 = lim f(x), given € > 0
X+ X+=0

there exists § > 0 such that |f(x) - £(x')| < ¢ whenever |x - x'| < 6. Let
N be sufficiently large so that |b(n)y| < 6 for all n 2 N and y € [a, b].
Since W(y) = 0 for y ¢ [a, b],

:w[és-‘m"-) £(x)dx - £(s)

- X
sty ) - 0]

()14

= 'ffnw(y)f(s - b(n)y)dy - £(s)

b
< ¢ [W(y)dy = ¢ (2.9)
a

uniformly in s for all n 2 N. Hence,

s - x

mBN[ -f(s)|+0

-o< s<»

as n <+ o,




Thus; the proof of Theorem 1 is immediate from Lemmas 1 and 2 since for

each ¢ > 0

s - X

1 n k
YOl Zk=1"[‘—3‘b(n ) = 18

P[ sup > €]
-00< §< 00

M
L S—y

1 n s & X1]
< P[ sup EETHT k=1[W[ b(n) j - EW[ b(n) I)

~-w<g<®

s - X
+ P[ sup bl(n) EW[ b(n)lj =~ £(s)

-0< g<o

> %] (2.10)

and each of the terms in (2.10) is a convergent series in n. All of the

conditions will be stated in Theorem 1 for easy reference.

Theorem 1: Let {Xn} be independent random variables with the same density
function f(s) which is continuous and has compact support. Let W(x) be a
nonnegative weight function which is continuous on its compact support and

integrates to 1. If

(a) nbz(n) > n6 for some § > 0, and

(b) Wy 32;:-33 = 0(b(n)) for some integer r > 0, then
n b(n)
1 n % X
e IOR S U RION B

coerpletely as n » =,

The case of the density function being discontinuous off its support is
not entirely excluded in Theorem 1. The following steps indicate modifications
which allows the theory to include a large class of density functions [for

example, the uniform densities].




Step 1. For an unknown density function which is continuous on [a, b] and

vanishes outside [a, b], there is no change in Lemma 1.

-~

Step 2. In Lemma Z it is easy to verify that for each € > 0

1 [S g xl}
sup —— W|————| - f(s)| > O
a+esssb-e Eb(n) b(n)
as n - o,
Step 3. Combining steps 1 and 2, for each ¢ > 0
s - X
1 n k
sup —_— ) W{——————J- f(s)| >+ 0
ateReEt 4 nb(n) “k=1"| b(n)

corpletcly as n » =,
.Hence, the complete convergence of the maximal deviation of the density estimate
holds on arbitrary closed intervals inside of [a, b]. Similar consideration
was also given in Woodroofe (1967).
In Lemma 1 the modulus of continuity was used only to replace fn(s)
by a polygonal approximation. Thus, the following corollary can be obtained

with basically the same proof.

Corollary 1: Let the density function f(s) be as stated in Theorem 1.
Let W(x) be a nonnegative weight function which has compact support and

integrates to 1. If
(a) nbz(n) > ns for some § > 0, and

(b') sup IW(s) - Unr(W)(s)l = 0(b(n)), then
asssb

sup + 0

-0 g<®

1 o
nb(n) :-lw[ b(n) ] = 59

cornlctely as n »+ =,




The ‘condition an(n) >'n6 need not hold for all n but only eventually.

Also, the condition can be stated as
(a') f xrexp(-cxbz(x))dx <
d

for some d@ > 0 where b(x) is a function which generates the bandwidths
b(1), b(2), ... and ¢ is a constant.
In considering mode estimates, assume tha: the continuous density function
f(s) has a unique mode 6, that is,
£(6) = max £(s).
-0< §<®
The sample mode en is also assumed to uniquely satisfy
fn(en) = max f_(s) for each n.
~®0<L §<o
Theorem 2. If the regularity conditions of Theorem 1 or Corollary 1

(or condition (b')) are satisfied, then
le_ - 8] >0
n
complately as n > o,

Proof: Since f(s) is uniformly continuous and has a unique mode 6, for
€ > 0 there exists n > 0 such that [x - 6| 2 e implies that |[£(8) - £(x)| 2 n.

Thus, it suffices to show that f(en) + £(8) almost surely. But,
|£(e,) - £(0)] < |£(6)) - £ (6 )] + |£ (0,) - £(8)|

< sup |£(s) - fn(s)l + | max £ (s) - max £(s) |

-0 §<® -0 §< o -0< g<®

<2sup [f (s) - £(s)] (2.11)

~0< g<o

pointwise for each n. From (2.11) and the commlete convergence of Ilfn - £,

it follows that |6 - 8| + 0 completely.




10

3. Comparisons and Useful Weight Functions. Brief comments on Nadaraya's

(1965) and Woodroofe's (1967) conditions and on useful weight futictions which
satisfy the results of the paper are listed for comparison.

To obtain a strong law rather than uniform consistency in probability (as
listed in the Introduction), the conditions on the weight function and bandwidth
sequence are expected to be more stringent. For example,

(A) 1let f be an unknown continuous density function. If

(N1) W(x) = W(-x) is of bounded variation and f xZW(x)dx exists; and
(N2) Z:=1 exp(-rnbz(n)) exists for each r > 0,-:hen
|1€, - £||, + 0 with probability one [Nadaraya (1965)].
Next,
(B) 1let the density have support on some neighborhood of compact interval,
€efey =1, 1]: « If
(W1) We LIP(B), 0 < B < 1; and

w2) b(n)_r = o(n) and n = o(b(n)-s) with 1 < r < §, then
x - X

1 n k = T e
-;2251 BT Zk=1 Wix, Ok £(x) 0(b(n)®) with probability one

where

sup ly|w(x, y)dy > 0 as t + =
-0< X<® y 2t

[Woodroofe (1967)].

For the results of this paper, the weight function W(x) needed to be
continuous on its compact support and satisfy a smoothness condition [(b) or
(b')]. Some useful weight functions for these results will now be listed.

First, Epanechnikov's (1969) optimal weight function

2
-f%: a-% if |x| s
4v5
W(x) =
0 otherwise




11

can be used. In this case, let a = -5 and b = 5. Then, |W(x) - W(y)| s C|x - y|

2b - 2a it - -
and mw{ B IO ] <C YO for constants C and C'. Thus, condition (b) is

easily satisfied.
If the weight function W satisfies a Lipschitz condition of order a, then

|Wwx) - W(y)| < M|x - yla and

sulsiirr] < s

for some M > 0. Thus, the bandwidth sequence b(n) must be chosen so that
(n)nur + o as n + » for some integer r > 0. (3.1)

Case 1: -1sas<0. No bandwidth exists for (3.1).

Case 2: a > 0. If b(n) = nP for some p > 0, then r is an integer

2 2p(1 + a)/a. Then, bI**mn®F > nP1*%) 4 & and (3.1) is satisfied.

Case 3: a < -1. Again, if b(n) = nP for some P > 0, then r is an integer

2 p(a + 1)/2a. Then bI*®(m)n®" 2 nP*)/2 | | 414 (3.1) is satisfied.

o —— o —— ——— . e s e ——— vy ———
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